Early error detection on word level
نویسندگان
چکیده
In this paper two studies are presented in which the detection of speech recognition errors on the word level was examined. In the first study, memory-based and transformation-based machine learning was used for the task, using confidence, lexical, contextual and discourse features. In the second study, we investigated which factors humans benefit from when detecting errors. Information from the speech recogniser (i.e. word confidence scores and 5-best lists) and contextual information were the factors investigated. The results show that word confidence scores are useful and that lexical and contextual (both from the utterance and from the discourse) features further improve performance.
منابع مشابه
Design and implementation of Persian spelling detection and correction system based on Semantic
Persian Language has a special feature (grapheme, homophone, and multi-shape clinging characters) in electronic devices. Furthermore, design and implementation of NLP tools for Persian are more challenging than other languages (e.g. English or German). Spelling tools are used widely for editing user texts like emails and text in editors. Also developing Persian tools will provide Persian progr...
متن کاملA two-level schema for detecting recognition errors
This paper proposes a two-level schema for the automatic detection of possible errors in speech recognition hypotheses. Given the recognition hypothesis of an utterance, the first level in our schema applies an utterance classifier (UC) to decide if the hypothesis is error-free or erroneous. In the latter case, the utterance is passed on to the second level in our schema for further processing....
متن کاملError Detection Using Linguistic Features
Recognition errors hinder the proliferation of speech recognition (SR) systems. Based on the observation that recognition errors may result in ungrammatical sentences, especially in dictation application where an acceptable level of accuracy of generated documents is indispensable, we propose to incorporate two kinds of linguistic features into error detection: lexical features of words, and sy...
متن کاملOCR Error Correction Using Statistical Machine Translation
In this paper, we explore the use of a statistical machine translation system for optical character recognition (OCR) error correction. We investigate the use of word and character-level models to support a translation from OCR system output to correct french text. Our experiments show that character and word based machine translation correction make significant improvements to the quality of t...
متن کاملProminence detection in Swedish using syllable correlates
This paper presents an approach to estimating word level prominence in Swedish using syllable level features. The paper discusses the mismatch problem of annotations between word level perceptual prominence and its acoustic correlates, context, and data scarcity. 200 sentences are annotated by 4 speech experts with prominence on 3 levels. A linear model for feature extraction is proposed on a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000